2024年度 名古屋大学大学院 理学研究科博士前期課程

物理科学領域自己推薦入学学生募集要項

【アドミッションポリシー】

自然科学に関する確かな基礎学力を持ち、 自然の理の探求と解明に挑むため、チャレン ジ精神に満ちあふれ、瑞々しい創造力をも つ人を受け入れます。

名古屋大学大学院理学研究科では、2022年4月に組織改編を行いました。これに伴い、新しい教育研究体制として、1専攻(理学専攻)の下に、専門性に応じて緩やかに連携した14のコースを設けています。これにより、これまでの3専攻の境界にとらわれず領域を超えた融合的・学際的研究を推進する体制を構築します。一方、教員の属する組織は学部教育の観点から、物理科学、物質・生命化学、生命理学の3領域に分かれます。次ページの専攻・領域・研究分野・コース相関表にあるように3領域に所属する教員は、コースに応じて領域を超えて連携し最先端の研究を通じて大学院生の教育を行います。

入学後、半年間はコースを定めず、大学院教養教育科目を中心とした講義履修と、合格時に決定した研究室で研究の基礎技術を学びます。8月にコース配属の希望を提出し、コース決定後にコース内の異なる研究室から副指導教員2名を選び、研究を進めていきます。異なる研究室から副指導教員を選出することで共同研究や融合研究を進めていきます。

入学試験は、物理科学、物質・生命化学、生命理学の領域ごとに行います。

出願者は、出願前に必ず、志望する全研究室と連絡を取るようにして下さい。その際、研究室と相談の上、出願前に研究室訪問を行っておくことを推奨します。

2022年からインターネット出願を導入しています。出願に必要なパソコンやプリンター等のデバイス、メールアドレス、顔写真データ、支払方法、提出書類等を確認してから出願してください。また出願前には、マイページを登録することになりますので、時間には余裕を持って出願をおこなってください。なお、大学から入学試験に関する重要なお知らせを配信します。メールアドレスについては、変更や削除の可能性がなく、日常的に確認しやすいものを準備してください。

大学院入学を希望している諸君へ

ー自己推薦入学制度の紹介ー

名古屋大学大学院理学研究科の物理科学領域では、平成12年度より、大学院において研究する強い意志を持った学生を広く全国から求めることを目的として、大学院博士前期課程の入学試験に自己推薦入学制度(以下では、自薦制と呼ぶ)を採り入れています。

学生募集要項にあるように、自薦制では、出願者に物理学において感銘を受けたことあるいは強い関心を持ったこと、卒業研究の内容、志望分野の選定理由やそれとの関係でアピールしたい自分自身の適性・特性など、を書いた「自己推薦書」を提出していただきます。(指導教員の推薦書は必要としない。)選考方法は、3年生までの成績と「自己推薦書」をもとに、物理学一般と卒業研究(実験)に関する面接試験を行って合否を判定するというものです。領域の定員のおおよそ半分程度を自薦制で、残りを一般選抜試験で採用する予定です。

多くの学生諸君が出願してくれることを期待しています。願書提出期間が比較的早いので注意してください。大学院入試制度の説明会を5月27日(土)13:00から坂田・平田ホール(理学南館)とオンラインとのハイブリットで行います。当日は研究室訪問も可能です。

なお、筆記試験と口述試験による一般選抜試験は、8月23日 (水),24日(木),25日(金)に行います。この募集要項は 別途用意しています。これら大学院入試案内や研究室案内につい ては、大学院入試のホームページ

http://www.phys.nagoya-u.ac.jp/entrance/

をご覧下さい。

専攻・領域・研究分野・コース相関表

	27 57 127.54	研究分野・コー	コース名													
専攻名	領域名	研究分野	素粒子・ハドロン物理学	天文・宇宙物理学	宇宙地球物理学	凝縮系物理学	生物物理学	物理化学	無機・分析化学	有機化学	生命情報・システム学	遺伝・生化学	形態・機能学	行動・生態学	学際理学	国際理学
		素粒子論(E)	0	0												0
		クォーク・ハドロン理論(H) 重力・素粒子的宇宙論(QG)	0	0 0		0										0
		プラズマ理論(P)	0	0	0											0
		宇宙論(C)	0	0	0											0
		理論宇宙物理学(Ta) 銀河進化学(Ω)		0	0											0
		複雑性科学理論(Σ _T)	0	0	0											0
		基本粒子(F)	0	0											0	0
		高エネルギー素粒子物理学(N) 素粒子物性(Φ)	0	0	0	0									0	0
		宇宙線イメージング(μ)	0		0										0	0
		天体物理学(A)		0	0											0
	物理科学	宇宙物理学(赤外線)(Uir) 宇宙物理学(X線,重力波)(Uxg)	0	0	0											0
		複雑性科学実験(Σ _E)	0	0	0											0
	自然現象とその奥に潜む法則に深い興味を抱き、豊かな創造力と強い意志で研究に動しむことにより、確かな知識と思考力を身に付け、社会の諸分野で貢献できる人材を育成します。	大気圏環境変動(AM)		0	0											0
		宇宙空間物理学観測(SS _E) 太陽宇宙環境物理学(SS _T)		0 0	0											0
		宇宙線物理学(CR)	0	0	0										0	0
		太陽圏プラズマ物理学(SW)		0	0											0
		非平衡物理(R)	_			0	0				0					0
		物性理論(凝縮系)(Sc) 物性理論(量子輸送)(St)	0 0			0										0
		計算生物物理(B))				0				0				0	0
		固体磁気共鳴(I)				0		0								0
		ナノ磁性・スピン物性(J) 機能性物質物性(V)				0	0	0								0
		応答物性(Y)				0										0
		生体分子動態機能(D)					0	0				_				0
理学		光生体エネルギー(G) 細胞情報生物物理(K)					0	0			0	0				0
		光物理化学研究室				0		0	0	0	Ĭ					0
		物性化学研究室				0		0	0	0					_	0
	物質・生命化学	量子化学研究室 分子組織化学研究室				0		0	0	0					0	0
		無機化学研究室						0	0	0					0	0
	物質や自然に対する知的好奇心を基に、自由な発想と柔軟な思考力で、新物質と新物性を開拓し	生物無機化学研究室							0	0		0				0
	化学に基づく物質及び生命の探求と解明に挑む 人材を育成します。	有機化学研究室 機能有機化学研究室						0	0	0		0		0	0	0
		特別研究室						0	0	0					0	0
		生物有機化学研究室								0	0	0				0
		有機金属・材料化学グループ 脳回路構造学					0		0	0	0		0	0	0	0
		細胞時空間統御					0				0	0) (Ŭ	Ĭ
		細胞内ダイナミクス					0				0	0	0			0
		細胞間シグナル 生殖生物学							0	0	0	0	0 0		0	0
		発生成長制御学									0	0	0	0	Ĭ	0
	生命理学	細胞制御学					0				0	0	0	0	0	0
	生命現象の原理を解き明かそうとする知的好奇	分子修飾制御学 分子第3講座					0	0			0	0	0		0	0
	心に基づく自由な発想と柔軟な思考の上に研究 活動を行うことにより、自然科学に対する幅広い	異分野融合生物学					0				0	٧		0	0	0
	知識とともに、生命科学における専門基礎知識、研究遂行能力ならびに研究発信力を併せもち、社	遺伝学									0	0	0	0		0
	会の様々な分野で大きく貢献できる人材を育成し	生体機序論 植物生理学					0			0	0	0	0	0	0	0
	ます。	細胞生物学					0				0	0	0			0
		器官機能学					0			0	0	0	0	0		0
		海洋生物学								0	0	0	0	0	0	0
		多細胞秩序 植物分子シグナル学					0				0	0	0	0	0	0
		微生物運動	—	-	1	1	0	1	-		0	0	0	0	0	0

[◎] 主たるコース○ ◎以外で属するコース

コース名

主 要 内 容

(a) 素粒子・ハドロン物理学

素粒子、ハドロンそして重力の基本法則とそこから導かれる現象を理解し、新たな物理法則の理論的研究を行う、もしくは加速器実験・非加速器実験による新粒子・新物理現象探索を行う。(b) (c) コースが扱う初期宇宙や高エネルギー天体現象の物理的基礎を与えるとともにその研究で連携し、新物理現象探索や量子場の理論の物性系の応用の研究において(d)(f)(g)コースと連携する。

(b) 天文·宇宙物理学

星間物質と星・惑星の誕生、銀河・銀河団と進化並びに宇宙論的な現象を理解する。その手法は一般相対論・磁気流体力学などの宇宙物理学基礎理論に基づく理論的研究及び、電波からガンマ線までの全波長域の電磁波と重力波に対する地上とスペース観測である。宇宙観測による新粒子・新物理現象探索の研究において(a)コースと連携し、またプラズマ物理学や観測手法論等は(c)コースと連携する。

(c) 宇宙地球物理学

宇宙・太陽・地球を一つのシステムとして捉え、銀河宇宙、太陽・太陽圏、電磁気圏、大気圏に生起する多様な現象のメカニズムと相互作用を理論研究と観測研究の連携を通して解明する。(b)コースの宇宙・天体現象の研究と連携する。

(d) 凝縮系物理学

結晶固体、準結晶、量子液体、液晶、コロイド、アクティブマターなど、膨大な数の粒子が集合することで生み出される現象を理解し、それに基づいて新奇な現象を解明する。(a)コースの場の理論や、(f)(g)(h)コースが扱う物質の研究と連携し、さらに(e)(h)(j)コースの物理学的基礎を与える。

(e) 生物物理学

生命現象を物理学の研究対象と捉え、統計力学や、最新の顕微操作や分光技術、大規模な新規シミュレーションを用いて、第一原理的に理解することにより、生物の複雑な階層的かつ普遍的な法則を理解する。(d)コースと手法や基礎理論の開発の面で協働し、また(f)(g)(h)(i)(j)(k)(1)コースの研究と連携し、モデル化による物理学的基礎を与える。

(f) 物理化学

化学的現象を物理学的な方法論を用いて解析することで、物質及び物質が生み出す現象を理解する。またそれらをもとに、新物質を生み出す。(g)(h)コースが扱う物質の研究と連携し、さらに(d)(e)(i)(j)コースの化学的基礎を与える。

(g) 無機·分析化学

無機物質を中心とした化学反応の開拓、新奇物質の創製及び化学現象解明を行うとともに、化学現象を利用した分析のための新しい方法論を生み出す。また、無機物質が関与する生物学的現象の解明を行う。(f)(h)コースが扱う物質の研究と連携し、さらに(d)(e)(i)(j)コースの化学的基礎を与える。

(h) 有機化学

有機物質を中心とした化学反応の開拓、新奇物質の創製及び化学現象解明を行うとともに、生物学的現象を化学的な視点から解明する。(f)(g)コースが扱う物質の研究と連携し、さらに(d)(e)(i)(j)コースの化学的基礎を与える。

(i) 生命情報・システム学

生命現象をシステムとして理解するために、情報科学的な手法を取り入れて、生体システムの構成要素の同定と特性の解明、構成要素間のネットワーク構造の理解やシミュレーションを行う。(j)(k)(1)コースが扱う生命科学の各階層にシステム生物学的な視点を与えることで連携する。(e)コースの生物物理学や(h)コースの有機化学から、物理的、化学的な基礎を得る。(e)コースの生物物理学には、システム生物学的な基礎を与える。

(j) 遺伝·生化学

生命現象をつかさどる生体分子や遺伝子、タンパク質をその構造や機能の観点から理解するために、分子構造解析や遺伝学、生化学を基盤とした解明研究を行う。(i)(k)(1)コースが扱うシステム、細胞、行動生態の研究と連携する。(d)コースの凝縮系物理学コース、(e)コースの生物物理学や(h)コースの有機化学から、物理的、化学的な基礎を得る。(e)コースの生物物理学には、生化学的な基礎を与える。

(k) 形態·機能学

生物の発生、再生、生殖、それによって組織や器官や個体の形態が作られる機構を、遺伝子と生体分子と細胞の機能の観点から解明するため、遺伝学、発生生物学、細胞生物学や生理学を基盤とした解明研究を行う。(i)(j)(1)コースが扱うシステム、遺伝子やタンパク質、行動や進化の研究と連携する。(d)コースの凝縮系物理学コース、(e)コースの生物物理学から、物理化学的な基礎を得る。

(1) 行動·生熊学

生物個体の生態や行動、生態系、進化など、マクロスケールでの生命現象の解明を行う。(j)(k)(1)コースが扱うシステム、遺伝子やタンパク質、細胞レベルでの研究と連携する。(c)コースの宇宙地球物理学から、地球科学的な基礎を得るとともに、同コースに生態学的な基礎を与える。

(m) 学際理学

理学研究の広い意味での新学術を創成する。宇宙線実験を応用した考古学研究や地球科学研究や、生命現象を理解し、機能を合成により創生し、さらには制御につなげるための、分子科学的研究を行う。(a)-(1)の各コースと広く連携し、新しい研究分野開拓を行う。国際高等研究機構に所属する教員など、専攻外の審査員に加えた学際的な体制で学位審査を行う。

(n) 国際理学

現行の国際コース (G30) を再編し、さらなる留学生の受入を行う。受け入れた留学生の学部学生時の履修状況に応じて後取り制度を柔軟に適用し、博士前期課程 1 年次の終わりごろをめどに(a)-(1)のコースに転コースできる。また国際理学コースのまま学際理学コースと同じく新しい研究分野開拓を行うこともできる。

1 出願資格

次の各号のいずれかに該当する者

- (1) 日本の大学を卒業した者及び2024年3月卒業見込みの者
- (2) 学校教育法第104条第7項の規定により学士の学位を授与された者及び2024年3月末日までに 学士の学位を授与される見込みの者
- (3) 外国において、学校教育における16年の課程を修了した者及び2024年3月末日までに修了見込みの者
- (4) 外国の学校が行う通信教育における授業科目を我が国において履修することにより、当該外国の学校 教育における16年の課程を修了した者及び2024年3月末日までに修了見込みの者
- (5) 我が国において、外国の大学の課程(その修了者が当該外国の学校教育における16年の課程を修了したとされるものに限る。)を有するものとして当該外国の学校教育制度において位置付けられた教育施設であって、文部科学大臣が別に指定するものの当該課程を修了した者及び2024年3月修了見込みの者
- (6) 外国の大学その他の外国の学校(その教育研究活動等の総合的な状況について、当該外国の政府又は 関係機関の認証を受けた者による評価を受けたもの又はこれに準ずるものとして文部科学大臣が別に 指定するものに限る。)において、修業年限が3年以上である課程を修了すること(当該外国の学校 が行う通信教育における授業科目を我が国において履修することにより当該課程を修了すること及び 当該外国の学校教育制度において位置付けられた教育施設であって前号の指定を受けたものにおいて 課程を修了することを含む。)により、学士の学位に相当する学位を授与された者及び2024年3 月末日までに授与される見込みの者
- (7) 専修学校の専門課程(修業年限が4年以上であることその他の文部科学大臣が定める基準を満たすものに限る。)で文部科学大臣が別に指定するものを文部科学大臣が定める日以後に修了した者及び2024年3月31日までに修了見込みの者
- (8) 文部科学大臣の指定した者(昭和28年文部省告示第5号)
- (9) 本研究科において、個別の入学資格審査により、大学を卒業した者と同等以上の学力があると認めた 者で、2024年3月末日までに22歳に達する者
- (注) 出願資格(9) により出願する者については、事前審査を行う。該当者は2023年5月19日(金)(必着)までに、①氏名、②住所、電話及びメールアドレス、③履歴(高校卒業後現在まで)、④志望領域名を記載した書類(書式自由)を提出すること。その際、封筒の表に「前期課程の事前審査書類請求」と朱書きすること。その後、教務学生係から事前審査書類をメールで送付する。

2 募集人員

50名

3 願書受付期間

2023年6月26日(月)~2023年6月30日(金)

受付時間 10時~12時、13時~16時

(郵送による場合も、上記期間内で、消印に関係なく6月30日(金)16時までに到着したものに限り受け付ける)

※インターネット出願登録期間及び 入学検定料払込期間

2023年6月12日(月)~2023年6月30日(金)12時

4 出願書類等

(1) 名古屋大学大学院 志願票及び写真票

[インターネット出願システムから、A4サイズで片面カラー印刷すること。]

※出願前3か月以内に撮影した正面向き、上半身、無帽、背景なしの顔写真データ(最大10MBまで)を用意し、インターネット出願システムからアップロードすること。

インターネット出願システムに入力した住所に合格通知を送付するので、出願後に住所が変更になる場合には必ず教務学生係に申し出ること。

(2) 名古屋大学大学院理学研究科志願票

〔本研究科所定の用紙に必要事項を記入の上、出願すること。〕

- (3) 成績証明書
- (4) 卒業(見込) 証明書

[名古屋大学理学部卒業(見込)者は不要。出願資格(2)により出願するものは、学位授与機構発行の学士学位授与(見込)証明書を提出すること。]

(5) GPAおよび主要科目成績表

[本研究科所定の用紙]

(6) 自己推薦書

〔本研究科所定の用紙〕

(7)類型該当性の自己申告書

[5 出願手続(5)を参照すること。]

(8) 受験承認書

[官公署その他民間会社等に在職している者は提出すること。]

(9) 国費外国人留学生証明書

[現在、国費外国人留学生である者は、在学大学が発行する証明書を提出すること。]

(10) 国費留学生の場合には入学検定料が免除となるので、出願時に「検定料の免除について」をチェックすること。

5 出願手続

出願手続は、インターネット出願システムでの出願登録及び入学検定料の支払いを行った後、出願期間内 に必要な出願書類などを提出することにより、完了となる。

インターネット出願での出願登録及び入学検定料の支払いを行っただけでは、出願手続完了にはならない。 なお、支払い期限は、出願登録日を含め4日間である。支払い期限内に入金がない場合は、出願登録は自 動的に取り消しとなるので注意すること。(取り消しとなったときは再登録すること)

※払込締切日までの日数が4日より短い場合は、払込締切日が優先される。

出願者は、前項(1)~(10)の書類等を本研究科教務学生係へ提出すること。出願書類の完備しない 願書は受理しない。

◎注意事項

- (1) 出願書類を郵送する場合は、インターネット出願システムから印刷する「出願用宛名用紙」をカラー で出力し、角形2号の封筒に貼りつけて、締切日時までに必着するよう送付すること。
- (2) 出願後は記載事項の変更及び検定料の払い戻しはしない。
- (3) 障害等があって試験場での特別な配慮を必要とする者は、2023年5月26日(金)までに、以下3点を添えて、その旨を教務学生係へ申し出ること。
 - (a) 受験上の配慮申請書 (障害の状況、受験上配慮を希望する事項とその理由書を記載したもの、 様式随意、A4サイズ)
 - (b) 障害等の状況が記載された医師の診断書、障害者手帳等(写しでもよい)
 - (c)障害等の状況を知っている第3者の添え書(専門家や出身学校関係者などの所見や意見書) 適宜それ以外の書類を添付しても構わない。

なお、受験や入学後の修学に関して相談の希望がある者は、出願期限までに問い合わせすること。

- (4) 留学生は安全保障輸出管理を受験までに実施する必要があるため、可能な限り早めに志望する研究分野の教員と連絡を取ること。なお、第1志望の研究室に配属されない場合には、安全保障輸出管理の制約で研究内容の制約を受ける可能性があることを理解した上で出願すること。
- (5) 2021年11月「外国為替及び外国貿易法」(外為法)に基づく「みなし輸出」における管理対象の明確化に伴い、大学・研究機関における学生への機微技術の提供の一部が外為法の管理対象となります。これに伴い、すべての学生が出願の際、「類型該当判断のフローチャート」に基づく「特定類型該当性の自己申告書」の提出が必要となる。

※類型該当性の判断について不明な場合は下記に問合せすること。

名古屋大学学術研究・産学官連携推進本部 安全保障輸出管理事務局

E-mail:anzen@aip.nagoya-u.ac.jp TEL:052-747-6702

6 入学検定料の払込方法

(1) 入学検定料 30,000円

※別途、払込手数料が必要となる。

(2) 払込期間(日本時間)

2023年6月12日(月)~2023年6月30日(金)12時まで

(3) 払込方法

入学検定料等の支払いは、以下のいずれかの方法で行うこと。詳細については、インターネット出願 の案内を確認すること。

- ・クレジットカード
- ・ネットバンキング
- ・コンビニエンスストア (日本国内のみ)
- Pay-easy対応銀行ATM
- (4) 入学検定料の返還について

出願書類を受理した後は、納入済みの入学検定料は返還しない。ただし、以下に該当する場合は、納入された入学検定料を返還する。なお、返還にかかる振込手数料は差し引く。

ア 入学検定料納入後、出願しなかった場合又は出願が受理されなかった場合

イ 入学検定料を二重に払い込んだ場合

※入学検定料の返還は銀行振込で行われる。海外の銀行の口座に返還する場合には、返還される 金額は大きく減額される他、返還に多大な日数を要する。入学検定料の納入は慎重に行うこと。 返還請求方法については、理学研究科教務学生係までメールで問い合わせること。

7 選抜方法

而接試験

2023年7月15日(土)、7月16日(日)

物理学一般・卒業研究または実験の中間報告・自己推薦書などについて試問し、学部成績も考慮して選抜する。面接試験の時間割は、出願時に登録したメールアドレスに、7月10日(月)までに送付する。メールが到着しない場合には、教務学生係まで連絡すること。

受験票はインターネット出願システムを通して周知するので、印刷して試験当日に持参すること。

8 合格者発表

2023年7月18日 (火) 正午、理学部C館1階教務学生係事務室に掲示し、翌日、理学研究科のホームページ https://www.sci.nagoya-u.ac.jp/に掲載する。

また「合格通知書」は9月中旬に、「入学手続き書類」は2月中旬に送付する予定である。 出願時に登録した住所に合格通知書等を発送する。

9 入学料及び授業料

入学料 282,000円

(2024年3月下旬の大学が指定する入学手続き期間内に納めること。)

授業料 前期分 267,900円 (年額535,800円)

- (注1)授業料は、前期及び後期の2期に分けて、前期分は5月、後期分は11月に納入する。
- (注2) 入学時及び在学中に学生納付金の改定が行われた場合には、改定時から新たな授業料が適用される。

10 注意事項

- (1) 出願者は入学を志望する研究室を第2志望まで記入することができる。
- (2) 出願者は、出願前に志望する全研究室と連絡をとること。その際、研究室と相談の上、出願前に研究室訪問を行っておくことが望ましい。

大学院入試説明会(2023年5月27日(土))研究室の連絡先は研究室連絡先一覧、及び、大学院入試ホームページ http://www.phys.nagoya-u.ac.jp/entrance/を参照のこと。なお、上記ホームページへは最新の情報が随時公開される。

- (3) 指導教員の推薦は必要としない。
- (4) 自己推薦入学で不合格であっても、8月の一般選抜試験に出願することができる。 (一般選抜試験の選考では、自己推薦入試の成績は考慮しない。)

11 その他

(1) 出願にあたって提供された氏名・生年月日・住所その他の個人情報は、入学選抜、合格発表、入学手続き、 及びこれらに付随する事項、並びに入学後の学務業務における学籍・成績管理を行うためのみに利用 する。また、取得した個人情報は適切に管理し、利用目的以外には使用しない。

2023年4月

 名古屋市千種区不老町 (郵便番号464-8602)

 名古屋大学大学院理学研究科教務学生係

 電話
 052-789-2402

 5756

 E-mail
 ri-dai@adm.nagoya-u.ac.jp

地下鉄名城線「名古屋大学」駅下車(2番出口へ)

自然災害対応等 緊急の連絡について

感染症や自然災害等により、試験日程の変更等が生じた場合は、下記の理学研究科ホームページでお知らせしますので、出願前や受験前に必ず確認してください。

◎理学研究科ホームページ

https://www.sci.nagoya-u.ac.jp/

◎連絡窓口

名古屋大学大学院理学研究科 教務学生係 電話 052-789-2402、5756 ri-dai@adm. nagoya-u. ac. jp

名古屋大学大学院理学研究科要覧

領域名	研究分野	r				教	1	員		
N N H		コード番号	教	授	准す	教 授	講	師	助	教
	(理論)									
	素粒子論(E)	010	棚橋	誠治	前川	展祐				
			久野	純治	早川	雅司				
			重森	正樹	戸部	和弘				
					酒井	忠勝				
	クォーク・ハドロン理論(H)	!	原田	正康					山口	康宏
	重力·素粒子的宇宙論(QG)	032			南部	保貞	柳	哲文		
	プラズマ理論 (P)	040	渡邉	智彦			前山	伸也		
	宇宙論(C)	052			市來	淨與			横山侧	多一郎
					宮武	広直				
	理論宇宙物理学(Ta)	051	犬塚修	多一郎	小林	浩				
	銀河進化学(Ω)	131			竹内	努				
	複雑性科学理論 (Στ)	151			沼 波	政倫 ◎				
	非平衡物理 (R)	012	宮崎	州正			川﨑	猛史		
	物性理論(凝縮系)(Sc)	021	紺谷	浩	小林	晃人	山川	洋一		
					大成記	滅一郎				
	物性理論(量子輸送)(St)	022	河野	浩			山影	相		
	計算生物物理 (B)	035	TAMA F	lorence	倭	剛久			木村	明洋
	(実験)									
	基本粒子(F)	061			中野	敏行				
		001			佐藤	修*◎				
	高エネルギー素粒子物理学(N)	071	飯嶋	徹	居波	賢二				
	1912 - 1104 (MAT 1 MAT 1 (10)	011	147 . 163	IIIA	堀井	泰之				
物理科学	素粒子物性 (Φ)	081	清水	裕彦	北口	雅暁			奥平	琢也
124-711-1	宇宙線イメージング (μ)	230	11177	PH /	森島	邦博				≫, E.
	天体物理学 (A)	<u>!</u>	田村	陽一	立原	研悟			山本	宏昭
	宇宙物理学(赤外線)(Uir)	111	金田	英宏	松尾	太郎	國生	拓摩	四个	A 11
	宇宙物理学(X線,重力波)(Uxg)	122	까 ഥ	大仏	中澤	知洋	石橋	和紀		
] 田初建于(AM, 重万灰)(UAS)	122			1117	AH TT	三石	郁之		
	複雑性科学実験 (ΣΕ)	159	永岡	賢一 ◎			^	Hh ←		
	固体磁気共鳴(I)	112	八八四	貝 ⊗	小林	義明	清水	康弘		
	四件做入分为(1)	112			1,1,44	秋 ツ」	松下	琢圾		
	ナノ磁性・スピン物性 (J)	115	公山	知由				放一郎 ◎	小木	光山
	機能性物質物性(V)	113	寺崎	一郎			开作1	K KIS (S)	中埜	彰俊
	応答物性(Y)	240	4 加	લાસ	谷口	博基	出口	≨ n 立 .	十至	毕 仮
		l	内括			日 巫	村上	和彦		
	生体分子動態機能 (D) 光生体エネルギー (G)	114	内橋 野口	貴之 巧	三野	广 本	加藤	緑牡樹		
		116	野口	17	1	広幸	加膝	祐樹	۸۸ ـــ	+ +\
	細胞情報生物物理(K)	082			槇	亙介			鈴木	直哉
	【宇宙地球環境研究所】	000	_1, ==>			tan 4.				
	大気圏環境変動(AM)	ŀ	水野	亮	長濵	智生	<i></i>	H 4+		
	宇宙空間物理学観測(SS _E)	181	平原	聖文	野澤	悟德	大川1	申一郎		
		46:	-H- m-	<u> </u>	大塚	雄一				* -
	太陽宇宙環境物理学(SS _T)	184	草野	完也 ◇	増田	智			家田	章正
		46:	堀田	英之		-t4- \.1				コルサ/
	宇宙線物理学(CR)	191	伊藤	好孝	三宅	芙沙	奥村	曉	毛受	弘彰
			田島	宏康	風間	慎吾				>/
	太陽圏プラズマ物理学 (SW)	200			岩井	一正			藤木	謙一

⁽注1)研究分野欄の () は、研究室の略称を示す。 Σ は核融合科学研究所。

⁽注2)◎印は、兼任教員を示す。

⁽注3)*印は、特任教員を示す。

⁽注4)◇印は、2025年3月31日定年退職予定教員を示す。

領域名	研 究 分 野	主 要 内 容
	(理論) 素 粒 子 論(E)	1GeV領域から10 ¹⁹ GeVにわたる広いエネルギー領域の素粒子現象の研究を通じて、標準模型を越える新しい理論体系およびその枠組としての場の理論のダイナミックスを研究している。現在行っている主なテーマは、超対称性理論や余剰次元理論、大統一理論、コライダー物理・フレーバー物理などの素粒子現象、宇宙素粒子現象、超弦理論、量子電磁気学の超高精度計算、対称性の力学的破れ、格子ゲージ理論の研究など。その他、場の理論の形式的整備の研究を行っている。
	クォーク・ハドロン理論(H)	強い相互作用の基本理論である量子色力学(QCD)におけるクォーク・グルーオンと、その多体系であるハドロンの多様な現象の解明を主な研究目的とする。主な研究対象は、エキゾチックハドロンの構造解明、カイラル対称性の自発的破れと質量の起源、高温度・高密度等の極限状況でのQCDの相構造と相転移機構、および、高密度核物質中のハドロンの性質変化と中性子星内部における状態方程式への影響などである。これらの物理現象解明を目標に、新しい理論や模型を開発しながら解析を実施している。
	重力・素粒子的宇宙論 (QG)	一般相対論をはじめとする重力理論の研究を行い、初期宇宙のインフレーションや現在の宇宙の加速膨張などの宇宙論的問題ならびにブラックホールなどの強重力下での現象の解明を目指す。また、重力理論と量子論との関わりを、量子情報の手法を用いて理解することを目標とする。
物理科学	プ ラ ズ マ 理 論 (P)	電磁場と無数の荷電粒子からなる自己電磁力系としてのプラズマは、宇宙空間のいたるところで粒子加速や乱流輸送、爆発現象などを引き起こすとともに、核融合実験や高強度レーザー実験においても主たる研究対象となっている。これらのプラズマに生起する非線形現象を理論的に研究している。最近取り組んでいる研究テーマは、オーロラの発達と構造変化、無衝突プラズマにおける乱流輸送、爆発的磁気エネルギー解放現象などである。これらを解明するために、解析的アプローチだけでなく、超並列コンピュータを用いた大規模シミュレーション研究を積極的に進めている。
	宇 宙 論 (C)	宇宙構造の起源と進化について理論的な研究を全般的に行っている。最新の観測結果に基づきつつ、初期宇宙から現在の宇宙までを理論的に明らかにすることが研究目的である。近年の宇宙論は観測的進展が著しく、その理解のために理論研究の果たす役割は大きい。本研究室は宇宙全体の姿を明らかにするような宇宙論的観測プロジェクトにも理論の立場から参加している。研究の手法としても、純粋な解析的理論から大規模数値シミュレーション、さらには観測データの理論解析に至るまで、実に多様なアプローチが取られている。
	理論宇宙物理学 (Ta)	宇宙における天体形成や進化を解明することで、物理学を宇宙の進化の中で系統化することを目指す。銀河・星・惑星などの形成・進化の過程で重要な役割を演じる物理現象を、解析的及び数値シミュレーションの手法を用いて理論的に調べる。その際に現象を構成している物理素過程の研究を重視し、得られた知見をその他の分野の物理学にも応用することを目指す。

領域名	 研 究 分 野	主 要 内 容
	銀 河 進 化 学 (Ω)	銀河は星と星間物質、暗黒物質からなる大集団であり、それ自体複雑な構造を持つと同時に宇宙論的なスケールでの基本構成単位となる天体でもある。銀河は様々な波長・エネルギースケールで多様な姿を持ち、多波長での研究が本質的に重要である。138億年にわたる宇宙進化の文脈から、銀河の形成・進化を多角的に研究し、また銀河形成に関する宇宙論的問題にも取り組む。多波長的アプローチという観点から、地上観測機器、宇宙望遠鏡、人工衛星等のデータ解析、および観測を再現する銀河形成進化の理論モデルの構築、そして最新のデータ科学の方法による基本方程式の構築という3つの視点から研究を進めている。
	複雑性科学理論 (Στ)	宇宙にある殆どの物質はプラズマ状態にある。多数の荷電粒子と電磁場から構成されるプラズマの物理系は、複雑性と呼ばれる非平衡かつ強い非線形性を有する状態にあり、非常にチャレンジングな研究領域である。ΣT研では、この複雑性科学のエッセンスを豊富に含んでいる磁場閉じ込め核融合プラズマを主な研究対象として、大型計算機を用いた理論シミュレーション研究を進めている。現在の主な研究テーマは、磁場閉じ込めプラズマにおける乱流輸送、構造形成、輸送制御に関する大規模シミュレーション研究やプラズマ輸送現象を表現する理論モデルの構築などに加えて、機械学習を利用したデータ解析、実験データとの直接的な比較手法の開発といったデータ科学研究、大規模シミュレーションに不可欠な数値計算技法や数値モデリングの研究などである。
物理科学	非 平 衡 物 理(R)	学部の熱力学・統計力学で学ぶ対象は、例外なく熱平衡系である。しかし身の回りを眺めると、面白い現象はほぼ例外なく、熱や物質の激しい流れを伴う非平衡状態で起こっている。だが、それらを理解するための普遍法則は確立していない。R研では、様々な非平衡現象を計算機シミュレーションおよび解析的手法を用いて研究している。現在、研究室で行われている研究の主な内容は、(1)ソフトマターの非平衡統計物理学:コロイド系におけるブラウン運動や巨視的な粘弾性などのレオロジー挙動、自己組織化など。(2)過冷却液体のガラス転移の理論的研究。ガラス転移の熱力学描像の確立に向けた大規模数値シミュレーション。(3)非平衡現象の数理模型の解析。などである。
	物性理論(凝縮系)(Sc)	量子力学に従う多粒子が相互作用する物質中では、量子性が本質な興味深い現象が発現する。典型例として、非従来型超伝導の発現や多彩な相転移現象・新規準粒子の出現による新物性がある。このような凝縮系物理における重要問題を、場の理論に基づき解析的および数値的に研究している。最近の主なテーマは以下のとおりである。(1) 電子相関の理論:遷移金属化合物や希土類金属、有機導体では、電子間に働く強い相互作用によって、高温超伝導現象など様々な興味深い現象が発現し、その起源の解明に取り組んでいる。(2) 量子相転移現象:量子力学的な揺らぎが協力的に発達した金属において実現する、電子液晶秩序などユニークな相転移現象や、臨界現象を研究している。(3) 新規準粒子による創発現象:金属中では、波動関数のベリー位相により、有効質量ゼロのDirac粒子など多彩な準粒子が出現し、その興味深い物理現象を研究している。

領域名	研究分野	主 要 内 容
領域名	研究分野 物性理論(量子輸送) (St)	主要内容物性物理学における現代の諸問題のなかでも、スピントロニクス、トポロジカル物質、量子輸送現象を中心に理論的に研究している。スピントロニクスは電子のスピンを利用してエレクトロニクスの技術革新を図る分野であり、物理学の観点からも興味深い新現象が多い。また近年、固体内電子の波動関数が非自明なトポロジーをもつ新しいクラスの物質(トポロジカル物質)の存在が認識されてきた。これらについて、量子統計力学や場の量子論の手法にもとづき解析的・数値的に研究している。最近の研究テーマは、(1)トポロジカルな磁化構造と電気伝導、(2)電子および他の素励起によるスピン輸送、(3)反強磁性体やトポロジカル物質を舞台としたスピントロニクス現象、(4)力学的スピン流生成、(5)新規トポロジカル量子現象の提案、など。 Biological complexes, structured ensembles of proteins and nucleic acids, perform many vital cellular functions and dysfunctions of those result in severe diseases. In order to understand diseases and develop treatments, the functional mechanisms of these biological complexes need to be elucidated. A crucial step in this process is the
物理科学		characterization of the structure and dynamics of these complexes. Our goal is to develop computational methods to obtain atomic level description of the functional states of biological complexes. Such methods will rely on the integration of computational simulations with various experimental data such as high resolution X-ray crystallography, lower resolution cryo-EM and X-ray Free Electron Lasers. The research in the lab is interdisciplinary. We use physics, chemistry, and computational science to study biological systems. More specifically, to describe the dynamics and energetics of biological molecules, we use empirical force fields based on the physico-chemical properties of atoms or, to reduce complexity, we also use coarse-grained models. Then methods such as molecular dynamics simulations/normal mode analysis are used to obtain structural models by incorporating experimental data into the modeling procedure, where numerical optimizations techniques, such as Monte Carlo and gradient following techniques, need to be implemented in programs.
	(実験) 基 本 粒 子(F)	素粒子現象をサブミクロンの精度で可視化できる原子核乾板とその読み取り装置を用いて、素粒子・宇宙をはじめ、それらにとどまらない研究を展開している。原子核乾板はタウニュートリノ検出の実績をもつ世界で唯一の検出器であり、この特徴を生かしニュートリノ振動の研究を推進している。また40mサイズの超微粒子原子核乾板を独自開発し、宇宙の暗黒物質を検出する実験を準備している。宇宙の暗黒物質の正体解明は今世紀の物理学の大きな課題の一つであり、超微粒子原子核乾板は暗黒物質の入射方向を同定でき、その検出のみならず将来暗黒物質望遠鏡としての役割を果たすことも期待できる。並行して原子核乾板を用いた超高分解能γ線望遠鏡の開発も行っており、2023年にはオーストラリアにおいて口径面積2.5㎡の検出器による観測を行い、解析を行う予定である。また、世界最大口径面積10㎡の次期望遠鏡の開発を行っており、銀河中心からのγ線やバースト現象などの高精度解析も目指している。

領域名	研究分野	主 要 内 容
	高エネルギー素粒子物理学(N)	ヒッグス粒子が発見され、標準模型を超える新しい素粒子現象の発
		見が期待されている。新しい現象の発見により、ダークマターの正
		体、素粒子の質量や世代構造の起源、真空や時空構造の理解、力の
		大統一など、現代素粒子物理学の課題の多くに迫る事ができる。こ
		れらの課題に挑戦するために、当研究室は、世界最高エネルギーの
		陽子陽子衝突型加速器を用いたLHC実験と、世界最高ビーム強度の
		電子陽電子衝突型加速器を用いたスーパーBファクトリー実験を主
		導している。LHC実験では、超対称性粒子や余剰次元粒子など未知の
		素粒子の発見を目指すとともに、ヒッグス粒子の性質の理解、トップない。たの作者、出席の様式ななる。
		プクォークの生成・崩壊の精査をする。スーパーBファクトリー実験
		では、B中間子やタウレプトンの崩壊の中に現れる未知の素粒子が 引き起こす新しい現象の探索をする。さらにJ-PARC加速器施設での
		ラューオン異常磁気能率測定による新物理探索も手がけている。ま
		た、これらの実験で用いられる、最先端のテクノロジーを駆使した
		粒子検出器と電子回路の開発・建設・運転も精力的に行っている。
		さらには、物理解析には欠かせない高速ネットワークを駆使した大
		型計算機システムの設計・構築・運転にも力を入れている。
	素 粒 子 物 性(Φ)	低速の中性子やミューオン、原子核を用いた精密測定により素粒子
		物理学の実験的研究を行っている。実験には世界最高輝度を誇るJ-
		PARCのパルス中性子やミューオン、カナダTRIUMF研究所のイオン
		ビーム、さらにフランスLaue Langevin研究所、アメリカNISTなど国
		内外の研究用原子炉を利用する。中性子を用いた研究テーマとして
		は、中性子崩壊寿命測定、複合核状態における空間・時間反転対称
		性の破れの増幅効果、中性子原子散乱及び中性子干渉における未知
### TH 43 23		相互作用(短距離重力を通じた余剰次元やダークエネルギー等)の
物理科学		探索、超冷中性子光学や結晶回析を用いた中性子電気双極子能率の 探索、中性子反中性子振動を通じたバリオン数非保存過程の探索な
		「状系、下圧」及下圧」放動を囲じたバッカン 数升保行過程の採系な どがある。必要な高性能中性子デバイス(集光光学系、スピン制御、
		ビーム整形、検出器など)を開発する。デバイスのテストなどに活
		用することができる小型の中性子源自体の開発も同時に行ってい
		る。さらに、ミューオンを含む原子の超微細構造に現れる新物理の
		探索実験などにも参加している。
	宇宙線イメージング(μ)	宇宙線中に含まれる素粒子ミューオン (µ) を利用した巨大構造物
		内部の非破壊イメージング技術(宇宙線イメージング)の開発とそ
		の多分野への展開を進めている。原子核乾板と呼ばれる写真フィル
		ム型の素粒子検出器を用いて、その開発・製造から観測の立案・実
		施、解析までの全てを行う。2017年にエジプトのクフ王のピラミッ
		ド内部に発見した未知の空間の三次元構造の解明を目指した研究
		開発を進めている。また、マヤ文明のピラミッドやイタリアの地下 唐फヤセットホーメーチルト 古田融合研究による字虫組ノメージンが表
		遺跡探査も進めており、文理融合研究による宇宙線イメージング考
		古子を開拓している。社会インノノ(南川堤内・盛工などの工作情 造物の健全性評価や地下空洞の探査など)の老朽化点検や工業用プ
		ラント (原子炉や溶鉱炉) の内部診断技術などをはじめとした宇宙
		線イメージングの社会実装を目指しており、多分野の研究者との学
		際研究や企業との共同研究も積極的に進めている。

領域名	研究分野	主 要 内 容
	天 体 物 理 学(A)	あらゆる天体の起源である星間物質が放射する電波(ミリ波・サブミリ波)に着目し、138億年にわたる宇宙の歴史の中で生じる恒星や銀河の形成・進化過程の観測的研究を推進している。世界最大級のサブミリ波望遠鏡ALMAをはじめとする国内外の望遠鏡で取得したデータを用い、初代銀河形成期の星形成活動と星間物質の物理、星間物質を大量に持つ活動銀河の深宇宙探査から、天の川銀河の分子雲や恒星の形成過程に至るまで、多様な天体現象を研究している。さらに、次世代超大型サブミリ波望遠鏡の実現をめざし、日蘭共同開発の集積型超伝導分光器DESHIMAなどの主力焦点面受信装置の開発とそれを用いた天文観測、電波領域での能動補償光学の実証、高精度望遠鏡の設計、データ科学的信号処理法の開発を推進している。また、当研究室が南米チリに設置したNANTEN2望遠鏡による超広域分子雲サーベイ(NASCO計画)やそれを支える受信観測システムの開発を進め、銀河系全体にわたる星間物質の性質を探究する。
	宇宙物理学(赤外線)(Uir)	近・中間・遠赤外線観測による、銀河系・近傍銀河の星間物質と星形成、銀河進化、太陽系外惑星などを研究課題としている。当研究室は、赤外線天文衛星「あかり」に搭載された遠赤外線観測装置を開発し、中間赤外線全天画像の作成を担当した。現在は「あかり」の膨大なデータに加えて、欧米の衛星観測データや「すばる」望遠鏡のデータなどを駆使して、上記テーマの観測研究を進めている。また、当研究室は南アフリカに近赤外線望遠鏡IRSFを所有しており、マゼラン雲などの詳細な観測も行っている。さらに、次世代の赤外線天文衛星用の光学系や焦点面観測装置の開発に携わるとともに、IRSF用の分光器や気球望遠鏡用の観測装置の開発なども行っている。また、将来の地球型系外惑星の分光観測に向けた宇宙干渉計や食分光器の開発を進めている。
物理科学	宇宙物理学(X線,重力波)(Uxg)	X線観測・装置開発に加えて、重力波検出実験も行っている。 (1)銀河・銀河団やブラックホール、恒星フレアなど、宇宙の高エネルギー天体現象をX線を用いて観測し、高温ガスの大規模な運動や重元素の生成、衝撃波や粒子加速などを研究する。現用のX線観測衛星のデータ解析に加え、次世代のX線分光、偏光、硬X線観測を目指した、先進X線望遠鏡やその周辺技術、検出器などの衛星搭載の装置開発を推進している。2023-27年にはXRISM衛星、FOXSI-4ロケット、COSI衛星の打ち上げも迫る。また、将来のMeV宇宙観測の装置開発や、自然界の静電場加速器をさぐるための雷ガンマ線研究を進めている。 (2)宇宙誕生直後(10 ⁻³⁵ 秒後ころ)に起こったと考えられているインフレーションの時代に生成された原始重力波を検出し、宇宙がどのように誕生したかを解明することに挑戦する。具体的には、スペース重力波アンテナDECIGOのため、量子ロッキングなどの新しい手法を用いて不確定性原理で規定される標準量子限界を破る技術を開発する。また、地上において原始重力波の検出を可能にするような全く新しい重力波検出方法の開発にも挑戦している。
	複雑性科学実験(Σε)	恒星、太陽コロナ、オーロラなど宇宙空間で見えているものほとんどが「プラズマ」であり、多様なダイナミクスが知られている。一方で、核融合や半導体産業など、プラズマの高度な制御技術は現代社会の基盤技術となっている。ΣΕ研では、非平衡、非線形、複雑性、階層性をキーワードとして、「非線形現象の宝庫」と言われるプラズマを"手の届く"実験室に実現し、その本質を探る研究を行う。具体的には、磁場閉じ込めプラズマを対象に、極限的な非平衡・不均一状態(乱流状態)を支配する法則に挑戦している。他にも、オーロラを出現させる磁気圏プラズマでも重要となるプラズマ中の波動粒子相互作用による粒子加速と異常輸送の研究、核融合装置のITER、大型加速器であるCERN, J-PARCなどで重要となる負イオンビーム集束性に関する研究などを行っている。実験は、核融合科学研究所の大型へリカル装置(LHD)、直線型高密度発生装置(Hyper-I)、中性粒子ビーム試験装置(NBTS)、電気対流乱流装置など、様々な規模の実験装置を使って物理的理解を深める研究を行っている。

領域名	 研 究 分 野	主 要 内 容
	固体磁気 共鳴(I)	巨視的な量子状態をミクロに観測することで、物性を支配する普遍的な物理法則の解明を目指す。電子の運動を原子スケールで観測する手法である核磁気共鳴(NMR)によって、電子のわずかな対称性の破れを高感度に検出し、量子スピン液体や新奇な超伝導・超流動などの新しい凝縮現象を解明していく。また、超高圧、超低温、光検出磁気共鳴といった最先端の技術開発により研究を進める。これらの研究は、将来新しい高温超伝導体の設計、従来の性能を凌駕する量子コンピュータやMRI(磁気共鳴画像装置)のコア技術へと進展する可能性を持つ。
	ナノ磁性・スピン物性(J)	ナノスケールで顕在化する新規磁性・スピン物性の解明と物理学の新概念の創出を目指した研究を推進している。最先端成膜・微細加工技術を駆使することで、新現象の発現の舞台を自らで人工的に設計・創製し、従来アプローチすることが困難であったような領域、特に、電子系・フォノン系・スピン系が強く結合したミクロな界面状態に関連する新領域を開拓する。最近の研究テーマには、(1) マルチフェロイクスと交差相関、(2) 準粒子の伝播とトンネル現象、(3) マグノンーフォノン結合と熱輸送、(4) スピン流と磁気秩序との相関、(5) 磁性と超伝導の相関、等がある。
物理科学	機 能 性 物 質 物 性 (V)	面白くて役に立つ新物質を設計・合成し、その物質の持つ機能を測定・理解することを研究目的とする。機能としては、物質の電気特性(電気伝導率、誘電率、熱起電力、非線形伝導など)に重点を置き、磁気的性質や構造物性を組み合わせることによって、その物質を総合的に理解することを目指す。現在は、(1)室温付近で巨大応答を示す酸化物、(2)熱と電気エネルギーを相互変換できる新物質、(3)相互作用が競合することによって生じる新現象 (4)珍しい構造から生じる新しい電子相、の4テーマに興味がある。生物物理学や物理化学の一部の研究室と共同研究できる。
	応答物性(Y)	物質に対して電場・磁場・圧力などの「入力」を加えると、分極・磁化・歪みなどの様々な「出力」が生じる。この「入力」と「出力」をつなぐ「応答」物性は、物質中に潜むからくりを明らかにする重要な探針となるだけでなく、私たちの生活をより豊かなものにする有益な道具立てにもなり得る。我々の研究室では、結晶・準結晶・アモルファスなどの多様な物質系を対象とし、構造と物性の相関を手掛かりとして、特異的な「応答」物性を示す新奇な物質の設計と創出に取り組む。現在は、巨大な分極応答を示す不均一系酸化物誘電体や光照射によって誘電率が変化するワイドギャップ酸化物、さらに新奇な電子相関や磁気秩序を示す準結晶の研究を進めている。
	生 体 分 子 動 態 機 能 (D)	タンパク質や核酸などの生体高分子は、構造変換や自己組織化、周囲の分子との結合や解離といった様々な動的過程を通じて独自の機能を発揮し、その階層的集積と連鎖が、細胞、組織を介して個体の生命活動として結実している。生命を理解するためには、その素過程、すなわち個々の生体高分子の構造とその時間発展、周囲の分子との動的相互作用などのダイナミクスを高精度に計測し、分子が働く作動原理を明らかにすることが重要である。我々の研究室では、溶液中環境下で高い時空間分解能で試料を可視化できる高速原子間力顕微鏡技術をベースに、物性マッピングが可能な新規機能の開発や他の先端一分子計測手法との複合化を進め、動態と機能が密接に関連した様々なタンパク質の機能発現機構を解明する。また、X線回折実験などの構造解析法を駆使して、生体分子の高次構造構築原理の解明も行っている。

領域名	研 究 分 野	主 要 内 容
	光生体エネルギー (G)	太陽光エネルギーによって生命活動のエネルギーを創り出す光合成は、地球最大の生体エネルギー変換系であり、酸素呼吸型生命との炭素・酸素循環を通して地球環境を維持している。40億年にわたる地球と生命の共進化の主役であった、この光エネルギー変換系は、蛋白質と色素・金属によって精巧に構築された生体ナノシステムであり、高い量子効率と環境に応じた様々な制御機構を持つ。我々の研究室では、光合成における励起エネルギー・電子・プロトン移動の動的メカニズムを原子・分子レベルで明らかにし、光合成生命の進化過程を考究する。そのため、赤外分光を用いて巨大蛋白質複合体中の個々の分子振動を検出し、電子スピン共鳴を用いて電子の動きを捉える。特に、光合成研究の最大の謎である、水分解による酸素発生の仕組みの解明に挑戦する。
	細胞情報生物物理 (K)	生命現象は、様々な時空間スケールでの情報伝達、情報処理を伴う。 生命現象にみられる情報変換の機構や過程を研究する。テーマの一つは、蛋白質フォールディングや生物時計の機構などの分子レベルの研究である。フォールディングとは、ポリペプチド鎖が特異的な天然立体構造に変換される過程である。生物時計は生物がもつ内在性時間制御機構であり、特に時計蛋白質による概日反応に着目する。独自に開発した高速反応測定法や分光学的手法、分子生物学・生化学的手法をも用いてそれらの物理学的機構を解明し、生命現象の分子レベルでの理解を目指す。もうひとつのテーマは、細胞内・細胞間での情報伝達過程の解析である。細胞内での生体分子などの動きと反応をイメージングや電気生理学的手法を用いて測定し、その動態と変化の機構を解明する。
物理科学	大気圏環境研究所】 大気圏環境変動(AM)	我々の生活に密接に関連する地球大気環境が研究の対象で、オゾン層破壊や地球温暖化のような地球規模の環境変化や地域的な環境汚染などが起きるメカニズムを解明し、環境問題の解決に寄与することを目的として以下のような研究を行っている。 a)電波(ミリ波・サブミリ波)・赤外線などの最新技術を使用して、大気中の微量気体成分を高感度で測定する新しい計測装置の開発を行う。 b)大気中の微量気体成分やエアロゾルの観測を行い、オゾン層破壊や地球温暖化に関連する物質の変動を調べ、その要因と大気環境への影響を明らかにする。 c)太陽活動に伴い、地球の極域に降り注ぐ高エネルギー粒子が大気環境に与える影響を南極昭和基地や北欧での観測をもとに明らかにする。 d)地球以外の惑星の大気について電波望遠鏡等の地上からの観測装置で調べ、地球大気との比較等を通してその特徴を明らかにする。

宇宙空間物理学観測(SSE) 地球の超高層大気から近傍の宇宙空間まで広がる領域はジオフペースと呼ばれ、国際宇宙ステーションや各種実用・科学人工衛星に代表される様々な宇宙機が飛翔している。現代社会において必要不可欠な社会基盤が展開するジオスペースでは、太陽コロナから明き付ける太陽風プラズマと惑星間空間磁場、地球固有磁場と電磁気圏プラズマ、下層大気からの力学的ホルギーと物質輸送が複雑に作用しあうことで、地球極級にはオーロラが出現し、静止軌道付近では宇宙嵐と呼ばれる大規模変動が引き起こされている。電磁気圏ブラズマに代表される宇宙プラズマと惑星磁場、中性・電離大気の相互作用は、太陽系内のみならず遠方宇宙でも基礎的かつ普遍的な素過程である。従って、地球近傍の宇宙空間・超高層大気で起きている諸物理機構・変動現象を解明するととは、宇宙開発に対する社会貢献だけでなく、宇宙に関する基礎的・普遍的科学知見の獲得と意味する。本研究グループでは、最先端の科学観測機器を独自に開発し、海外・国内での地上フィールド観測と探査機を用いた宇宙型間での直接観測を両輪とした観測的・実験的研究を行い、この領域における物理素過程と変動現象を解明していく。 1) 北欧において、大型のレーダー装置を含む各種レーダー、ナトリウム温度・風速ライダー、ファブリベロー干渉計、オーロライメージャなどを用いた国際協力による拠点観測を実施。 2) 宇宙空間・惑星大気を満たすプラズマ・中性粒子を計測するため地球・惑星探査機、観測ロケットに搭載する分析器を研究・開発し、国内・国際協力を基盤とする探査・観測計画を提案・推進。太陽宇宙環境物理学(SSr)
屋及び地上観測データの解析を駆使することによって多角的に実施している。我々が生きる星"地球"とその周辺の宇宙空間(ジオスペース)は母なる星"太陽"と強くつながり、一つのシステムを形作っている。このため、地球環境は太陽と宇宙から絶えず影響を受け続けている。SST研は、太陽と地球が織りなすこの広大なシステムの謎を学際的に探ることができる世界でも数少ない研究をある。研究領域は、太陽黒点活動(太陽ダイナモ)、太陽フレア、コロナ質量放出、太陽コロナ加熱と太陽風、地球惑星の磁気嵐、オーロラ嵐まで多岐に渡る。様々な恒星や惑星磁気圏で起きる多様な宇宙ブラズマ現象に関する理論シミュレーション研究を本格的に行うことができる。GPSや衛星通信などにより宇宙利用が人々の生活を支える現代社会では、太陽宇宙環境の変動を予測する宇宙天気予報の重要性が高まりつつある。SST研では太陽黒点活動、太陽フレア頻発、放射線帯の変動、宇宙嵐(ジオスペース嵐)などの予測を目指した先進的な宇宙天気研究も行っている。宇宙ブラズマと中性大気の衝突の理論研究も行っている。宇宙ブラズマと中性大気の衝突の理論研究も行っている。宇宙ブラズマの基礎から宇宙天気予報への応用まで、多岐にわたる研究と教育を実施している。

領域名	 研究分野	主 要 内 容
	宇宙線物理学(CR)	宇宙線は宇宙から飛来する高エネルギー素粒子であり、宇宙での高エネルギー現象や未知の素粒子についての情報をもたらす。宇宙線観測による宇宙線加速や伝播機構の解明、宇宙線による素粒子物理の研究、宇宙線と太陽地球環境との相互作用の研究を行う。 a)銀河宇宙線観測による宇宙線加速機構の研究と暗黒物質探索。フェルミ衛星、MAGIC望遠鏡、CTAによるγ線観測により、宇宙での粒子加速機構の解明や、暗黒物質の探索を行う。 b)宇宙線による素粒子物理の研究。スーパーカミオカンデでのニュートリノ観測やXENON実験での暗黒物質WIMPの探索、またLHCでの超前方測定LHCf実験による超高エネルギー宇宙線反応の研究を行う。 c)宇宙線と太陽地球環境との相互作用。年輪中炭素14濃度や氷床中ベリリウム10濃度測定から、過去の宇宙線変動や太陽活動について研究する。
物理科学	太陽圏プラズマ物理学(SW)	太陽の大気であるコロナは約100万度もの高温に加熱され、コロナ大気中の粒子は電離したプラズマ状態になっている。この大気の一部は太陽の重力を振り切り、超音速の風「太陽風」となって宇宙空間へと流出する。太陽風は惑星の公転軌道を遥かに超えて進行を続け、太陽-地球間の距離の100倍以上もの広大な領域に広がる「太陽圏」を形成している。太陽風は300km/sから800km/s程度まで場所や時期によって大きく変動し、その変動は地球を含む惑星圏環境にも大きな影響を与えている。また、太陽では突発的なエネルギー解放現象によってプラズマ大気の塊の放出現象「コロナ質量放出(CME)」が発生する。太陽風やCMEによる擾乱は情報通信などの社会活動にも影響を与えるため、近年「宇宙天気予報」の実用化が求められている。太陽風は電波を散乱する世質がある。そのため太陽系外の下を電波観測中に天体と地球の間を通過する太陽風やCMEを電波の散乱現象「惑星間空間シンチレーション(interplanetary scintillation: IPS)」を用いて地上から観測できる。SW研では、IPS観測のための独自の大型電波望遠鏡群を保有しており、IPS観測を中核とした最先端の太陽圏プラズマ物理学研究をおこなっている。例えば、太陽風の加速過程、伝搬過程、流源の探査など太陽風の性質を調べる研究、太陽圏のグローバルな構造や、その太陽活動依存性を調べる研究、大陽圏のグローバルな構造や、その太陽活動依存性を調べる研究、大陽圏のグローバルな構造や、その太陽活動依存性を調べる研究、大陽圏のグローバルな構造や、その太陽活動依存性を調べる研究、大陽圏のグローバルな構造や、その太陽活動依存性を調べる研究、大陽圏のグローバルな構造や、その太陽活動依存性を調べる研究、大陽圏のガローがな構造を理解している。例えば、大陽圏のが大場と協力して推進とでいる。研究室の詳細: https://stswl.isee.nagoya-u.ac.jp/

物理科学領域 志望研究分野 連絡先一覧

研究室名	担当者	メールアドレス	郵送先
Е	棚橋 誠治	tanabash@eken. phys. nagoya-u. ac. jp	A
Н	原田 正康	harada@hken.phys.nagoya-u.ac.jp	A
QG	南部保貞	nambu@gravity.phys.nagoya-u.ac.jp	A
Р	渡邉 智彦	watanabe.tomohiko@nagoya-u.jp	A
С	市來 淨與	ichiki.kiyotomo.a9@f.mail.nagoya-u.ac.jp	A
Та	犬塚修一郎	inutsuka.shu-ichiro.i2@f.mail.nagoya-u.ac.jp	A
Ω	竹内 努	takeuchi.tsutomu.g8@f.mail.nagoya-u.ac.jp	A
Στ	沼波 政倫	nunami.masanori@nifs.ac.jp	В
R	宮崎 州正	miyazaki@r.phys.nagoya-u.ac.jp	A
Sc	紺谷 浩	kon@slab. phys. nagoya-u. ac. jp	A
St	河野 浩	kohno@st.phys.nagoya-u.ac.jp	A
В	TAMA Florence	florence.tama@nagoya-u.jp	A
F	中野 敏行	nakano@flab.phys.nagoya-u.ac.jp	A
N	飯嶋 徹	iijima@hepl.phys.nagoya-u.ac.jp	A
Φ	清水 裕彦	hirohiko.shimizu@nagoya-u.jp	A
μ	森島 邦博	morishima@flab.phys.nagoya-u.ac.jp	A
A	田村陽一	ytamura@nagoya-u.jp	A
Uir	金田 英宏	kaneda@u. phys. nagoya-u. ac. jp	A
Uxg	中澤 知洋	nakazawa@u. phys. nagoya-u. ac. jp	A
ΣΕ	永岡 賢一	nagaoka@nifs.ac.jp	В
I	小林 義明	i45323a@cc. nagoya-u. ac. jp	A
J	谷山 智康	taniyama.tomo@nagoya-u.jp	A
V	寺崎 一郎	terra@nagoya-u. jp	A
Y	谷口 博基	taniguchi@nagoya-u.jp	A
D	内橋 貴之	uchihast@d. phys. nagoya-u. ac. jp	A
G	野口 巧	tnoguchi@bio.phys.nagoya-u.ac.jp	A
K	槇 亙介	k_maki@synapse.phys.nagoya-u.ac.jp	A
AM	水野 亮	mizuno@isee.nagoya-u.ac.jp	С
SSE	平原 聖文	hirahara@nagoya-u.jp	С
SST	草野 完也	kusano@nagoya-u. jp	С
C R	伊藤 好孝	itow@isee.nagoya-u.ac.jp	С
SW	岩井 一正	k. iwai@isee. nagoya-u. ac. jp	С

*郵送により志望研究室と連絡をとる場合は下記の住所と担当者氏名を明記すること。

【注】志願票の郵送先とは違うので注意すること

А	〒464-8602	名古屋市千種区不老町 名古屋大学大学院理学研究科 物理科学領域
В	〒509-5292	土岐市下石町 322-6 自然科学研究機構 核融合科学研究所
С	〒464-8601	名古屋市千種区不老町 名古屋大学宇宙地球環境研究所

自己推薦書

次の内容のそれぞれについて項目ごとに、合計 1000 字から 2000 字で記述してください。(1) 物理学において、今までに感銘を受けたこと、あるいは強い関心を持ったこと。その理由と内容、その後それをもとに自分でさらに強く追求したことを具体的に記述。数式や図を用いてもよい。(2) 現在行っている、もしくはこれから取り組む予定の卒業研究の内容。(3) 志望分野とそれを選んだ理由。(4) 志望分野に対するあなたの適性、特性のアピール。(5) その他、入学後の抱負、希望する将来の進路、研究について考えていることなどを自由に記述。なお、第二志望のある出願者は、(3) と(4)において、第二志望分野についても明記すること。

氏	名																								
))]]]]]]]
					1			<u>.</u>					ļ 		,]	ļ]
						<u> </u>	<u> </u>	<u></u>	<u> </u>	<u> </u> 	<u> </u>		ļ !	 	 		<u> </u> 		 	 <u> </u>]]]]	<u> </u>
			 			<u>i</u>	i	i	i	j 	i	j 	 	j 	j 	 	J 	 	 	 J]	J]	jj 	 j 	j 	j
			 									 	 	 	J	/	j	, , , , , ,	,]]]]	j j]
													ļ 	 ! ! !	 ! ! !]]]]
			 				ļ	ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u> 	ļ 	<u> </u> 	; 	ļ 	<u> </u>	 	 	 <u> </u>	<u> </u>]	 ļ	ļ	ļ
			 			<u>. </u>		 T					 				<u> </u> 			 <u> </u>]]]]]]]	
			 				 	 	 	 	 		} }	 	, , , ,	 	J	;) 	J]]]	 	} }
															,	/]]]
							Ī	<u> </u>]]]]]	<u> </u>]
			 			<u> </u>	<u></u>	<u> </u>	<u>.</u>	<u></u>	<u> </u>	 !	ļ 	ļ 	; ; ; ; ;		<u> </u> 	 		 <u> </u>]]]	 j 1	j T	j
					1		1	 	 	 	 	 	 !	 	, , , ,]	J]]]	
			 			i i	 	j	 	 	 	 	j J	j	j	 	j]	 	 	 j J	j]]]	j]]
						 - -									,]]
			 		<u>.i</u>	<u>. l</u>	<u> </u>	<u></u>	<u> </u>	ļ	<u>.</u>	ļ 	<u> </u>	<u> </u> 		 	<u>.</u>		 !	 <u> </u>	<u> </u>]	 <u> </u>]]	ļ
			 			 	<u>.</u>	 	 		<u> </u>	 	 	 	; ; , ; ;	; , , , , ,	 	; 		 j]]]]	j]
			 												;		J			 J]]]]	j
]]]]	
]]]	ļ	
			 				<u> </u>	 T	<u>.</u>	<u> </u>	<u> </u>	ļ !	<u> </u>	 			<u> </u>			 <u></u>	<u> </u>]]]]	<u></u>
			 ,	,	,	,	-,	-,									j 			 j 	J]]		j 	
										 			/	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	/	/]	, , , , ,	/]]]]	<u></u>]
			 ,				-,	-,	.,)]]]]]]]
		i i	 i	i	i	i	i	i	i	i	i	i		i			<u> </u>]	<u> </u>]] }] }	
								1	}			:										1	1		

注意:ワープロで作成したものを上記のマス目の上に貼り付けても良い。その場合、マス目は気にしなくて良いが、字数制限は守ること。(マス目は31字×31行)

自己推薦書

L	氏	名																					
								 					 	 	 	 		 		<u> </u>	 		
								 		 	 	' 	 ' 	 	 	 		 			 		!
			[,		/ 	 ' 	 									
				,				 					 	 	 			 			 		ļ
								 		 ! ! !	 ! ! !	 ! !	 	 			<u>]</u>]]]]	
				 ! ! !							 ! ! !]	 <u> </u>]]			
			[[[<u> </u>]]]]]	j
												; ;	 	 		 		 <u> </u>				<u> </u>	j
				 ! ! !							 ! ! !	 ! !]	 <u> </u>	<u> </u>]			ļ
			[[<u> </u>]]]			ļ
]	 			 		
]	 			 		
							<u>.</u>	 		: ! !	! ! ! !		 	 	 			 ļ 	<u> </u>	<u> </u>	 		
								 					 	 	 	 	 	 	<u> </u>	<u> </u>	 	ļ 	ļ
						! !	<u>.</u>	 		<u> </u>	:		 	 	 	 		 			 		
	l		 	 	 		<u>.</u> 	 					 	 	 	 	 	 ļ	<u> </u>	<u>.</u>	 		ļ
	i						<u>.</u>	 					 	 	 	 	j	 ļ	ļ	j	 		ļ
				 			 	 			: ! !		 	 	 	 	 	 ļ	ļ	<u> </u> 	 		ļ }
	l		[L	! 	 			: :		 	 	 j	 	j	 ļ ;	j	j	 	 	ļ ;
	!		[:	 	<u> </u>	 			 !		 	 	 	 	j	 ļ !	<u> </u>	<u> </u> 	 		ļ !
	i		[[! :	 		 :	! !		 	 	 	 	j	 j T	j T	j T	 	j]	j !
<u>i</u>			[[<u>.</u> T	 			 		 	 	 	 	 	 	j T]	 		ļ !
	i						<u>.</u>	 				} 	 	 	 	 		 } }	 	j 	 	}	ļ !
	l		[[[[<u>.</u>	 		 	 	 	 	 	 	 	<u>-</u>	 !	}]]]	 	 !	 !
i	i		[[!	! !	<u>.</u>	 		: :	 !	: :	 	 	 	 	j	 !	i I	i I	 		! !
	i		[[!	: !	 !	 	 	 	 		 j]	j]	j]	 	 !	i !
			[[i	 					 	 	 	 	نـــــ [) 	 	 	 !	j
i	i		 [: 		i T	 		! !		} }	 	 	 	 	i	 } }	} }	; ;	 	; 	; ;
<u>i</u>	i		L [L [L 	! 	! :	 	 	 	 	 	ز۔۔۔۔ []	J 	J 	 	: :	
	:		[[[[: :	: :	: :	 	 	 	 	j	 !]]	 	; :	! !
	!		 [i	 !	i	 	 	 	 	لــــــ [i 	i 	; 	 	i 	i
					 		 	 		 		' 	 ' 	 	 	 		 ·			 	, 	! !

注意:ワープロで作成したものを上記のマス目の上に貼り付けても良い。その場合、マス目は気にしなくて良いが、字数制限は守ること。(マス目は31字×34行)

GPA および主要科目(物理学)成績表

志望研究分野	1.	2.	
出身大学		氏名	

(1) GPA (Grade Point Average)

志願者の累積 GPA および出身大学 GPA の最高値(満点)を記入してください。

	(志願者の GPA)	(GPA の最高値)
GPA		

出身大学が GPA を導入していない場合には、次式を用いて独自に計算すること(すべての単位について計算する。成績評価が異なる場合には、近いものに読み替えること。合格・不合格により成績評価された授業科目は GPA に算入しない。)。

 $GPA = \frac{4.3 \times A^{+} \text{ 取得单位数} + 4 \times A \text{ 取得单位数} + 3 \times B \text{ 取得单位数} + 2 \times C \text{ 取得单位数} + C^{-}$ 取得单位数 $A^{+} \text{ 取得单位数} + A \text{ 取得单位数} + B \text{ 取得单位数} + C \text{ 取得单位数} + C^{-}$ 取得单位数 B TR + B

(2) 主要科目(物理学)成績表

物理学に関する主要科目の成績を記入してください。

分野	科目	成績	*	*
力学		$A^+ \cdot A \cdot B \cdot C \cdot C^-$		
月月子解析力学		$A^+ \cdot A \cdot B \cdot C \cdot C^-$		
州年初1ノナー		$A^+ \cdot A \cdot B \cdot C \cdot C^-$		
		$A^+ \cdot A \cdot B \cdot C \cdot C^-$		
電磁気学		$A^+ \cdot A \cdot B \cdot C \cdot C^-$		
		$A^+ \cdot A \cdot B \cdot C \cdot C^-$		
		$A^+ \cdot A \cdot B \cdot C \cdot C^-$		
量子力学		$A^+ \cdot A \cdot B \cdot C \cdot C^-$		
		$A^+ \cdot A \cdot B \cdot C \cdot C^-$		
熱力学		$A^+ \cdot A \cdot B \cdot C \cdot C^-$		
統計力学		$A^+ \cdot A \cdot B \cdot C \cdot C^-$		
NYLET /J +		$A^+ \cdot A \cdot B \cdot C \cdot C^-$		
		$A^+ \cdot A \cdot B \cdot C \cdot C^-$		
物理数学		$A^+ \cdot A \cdot B \cdot C \cdot C^-$		
		$A^+ \cdot A \cdot B \cdot C \cdot C^-$		
		$A^+ \cdot A \cdot B \cdot C \cdot C^-$		
物理学実験		$A^+ \cdot A \cdot B \cdot C \cdot C^-$		
		$A^+ \cdot A \cdot B \cdot C \cdot C^-$		

※は空欄のままにしておくこと。

(1)、(2) について、成績評価が秀・優・良・可・不可の場合、秀= A^+ 、優=A、良=B、可=C、不可=F と読み替え、それ以外の成績評価の場合には、近いものに読み替えること。また、2019年度以前の名古屋大学入学者(5段階評価)は、Sを A^+ に、C*をCに読み替えること。

科	目	欄	がフ	下足	す	る	場	合	0	記	入	.例	:	

(予め記載してある $\mathbb{C}A^+ \cdot A \cdot B \cdot C \cdot C^-$ は消しても可)

力学 力学1A ; 力学1B A(力学1A); S(力学1B)	
---------------------------------	--

2024年度 名古屋大学大学院理学研究科志願票 博士前期課程自己推薦入学

志領	域	望 名	物	理	科		がな 名		受験番号		
志研	究 分							2.			
1	略称				()		()	
	ード番					 					

履歷書

		学歴・職歴
年	月	学歴・職歴 空白期間がないように記入し、自宅において学習した期間については「自宅学習」として、その期間を記入すること。 外国における学歴を含む場合は、小学校入学から現在まで空白期間がないように記入すること。
		高等学校入学